S0960-894X(96)00145-X

SUBSTITUTED 1,3,5-TRIAZINES AS CHOLESTERYL ESTER TRANSFER PROTEIN INHIBITORS

Yan Xia, * Bita Mirzai, Samuel Chackalamannil, Michael Czarniecki, Suke Wang, Anthony Clemmons, Ho-Sam Ahn, and George C. Boykow Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, U.S.A.

Abstract. A series of substituted 1,3,5-triazines (represented by 2) were synthesized and evaluated for their cholesteryl ester transfer protein (CETP) inhibitory activities. Among the most potent compounds were those with R = benzyl ($IC_{50} = 9 \, \mu\text{M}$) and R = [(2-naphthalenyl)methyl] ($IC_{50} = 5 \, \mu\text{M}$). Copyright © 1996 Elsevier Science Ltd

Plasma lipoprotein profiles play an important role in the development of atherosclerosis, a major cause for cardiovascular mortality. Proper maintenance of the "good" HDL level and reduction of the "bad" LDL level has been a major goal in treating cardiovascular diseases. Many therapeutic approaches have been undertaken toward this goal. Cholesteryl ester transfer protein (CETP), a hydrophobic glycoprotein with a molecular weight of 74 kDa, transfers cholesteryl ester (CE) from HDL to LDL and in return transfers triglyceride (TG) back to HDL. The net result is a reduction of the beneficial HDL concentration and an increase in the detrimental LDL concentration. Therefore, inhibition of CETP presented a potential therapeutic approach for treating atherosclerosis.

We, and others, have recently described several CETP inhibitors.⁴⁻⁶ Here we disclose a new class of CETP inhibitors, namely, the 2,4,6-trisubstituted 1,3,5-triazine derivatives represented by structure 2. Our initial lead structure $(2a)^7$ was discovered by random screening. In the subsequent SAR development we replaced the hydrazone group in 2a with a variety of isosteric substituents (*vide infra*). The resulting triazine compounds display a range of in vitro CETP inhibitory activities with the most potent ones having low μM IC₅₀ values.

2a: R = NHN=CHPh

920 Y. XIA et al.

Compounds represented by structure 2 were prepared from the key intermediates 1a or 1b (Scheme 1).⁷ The disubstituted triazine derivative 2b was obtained by chemoselective hydrogenolysis of 1a with HI and PI₃⁸ followed by TFA treatment. The displacement of the chlorine atom of 1a,b by oxygen and nitrogen nucleophiles went as described in the literature.⁷ For the introduction of carbon nucleophiles, we found that palladium-mediated cross coupling reactions of organozinc and organotin reagents to triazinyl chloride 1b gave the carbon-substituted products (3m-s) efficiently and in good yields (3m, 73%; 3n, 51%; 3o, 83%; 3p, 40%; 3q, 84%; 3r, 90%; and 3s, 81%).^{9,10} To our knowledge, these are the first examples of Pd-mediated cross coupling reactions of organozinc and organotin reagents to triazinyl chloride.¹¹ In the absence of Pd(PPh₃)₄, tributylphenyltin does not react with 1b and p-chlorobenzylzinc bromide¹² react partially with 1b to form 3r (52% conversion by HPLC) under the same reaction conditions.

Scheme 1. (a) HI, PI₃, rt, 42%; (b) TFA, 75 °C; (c) ROH, NaOH; (d) NHRR', K_2CO_3 , n-BuOH, reflux; (e) TFA, 0 °C to rt; (f) RSnBu₃ or RZnBr, Pd(PPh₃)₄.

The CETP inhibitory activities of these compounds were measured using an in vitro Scintillation Proximity Assay (SPA).⁴ The results are listed in Table 1. Clearly, the hydrazone group in 2a can be replaced by several groups to give the same activities. There is a size requirement for activity at this hydrazone substitution site: the H and OH substituted compounds (2b and 2d) showed little inhibition at 50 μ M, whereas increasing size resulted in increasing inhibition ($2d\rightarrow 2e\rightarrow 2f$). For nitrogen substituted compounds, secondary amine substituted compounds (2k and 2l) gave more potent inhibitors than primary amine substituted compounds (2g-2j). Most carbon substituted compounds displayed low μ M CETP inhibitory activities except the small vinyl group substituted compound (2n).

In conclusion, a new class of 1,3,5-triazine derived CETP inhibitors was discovered by random screening and SAR development. These compounds exhibit low μM inhibition of CETP in vitro and may have potential use in treating cardiovascular diseases caused by low HDL levels.

Table 1.

Entry	R	IC ₅₀	% Inhibition	Entry	R	IC _{so}	% Inhibition
		(µM)	(@ 50 µM)			(µM)	(@ 50 µM)
2a	NHN=CHPh	10		2k	MeN	6	
2b	Н		14	21		5	
2 c	Cl		37	2m	Ph	11	
2d	ОН		11	2n	- OH= OH ₂	-	48
2e	OBun		57	20	— C≡ C− Ph	12	
2f	OCH ₂ CH ₂ Ph		66	2p	Bun	11	
2g	NHCH ₂ CH ₂ Ph	45		2q	- CH₂-Ph	9	
2h	NHCH ₂ Ph		52	2r	-CH₂-CI	9	
2i	HNOMe	16		2 s	-CH ₂ -	5	
2 j	HN OH	21			-		

Acknowledgment. We thank Drs. M. Tong and M. Green for helpful discussions and Dr. Puar for the NMR structural determinations.

References and Notes

- 1. McCarthy, P. A. Med. Res. Rev. 1993, 13, 139.
- 2. For a review on CETP, see: Tall, A. R. J. Lipid Res. 1993, 34, 1255.
- 3. For atherogenic effect of CETP on transgenic mice, see: Marotti, K. R.; Castle, C. K.; Boyle, T. P.; Lin, A. H.; Murray, R. W.; Melchior, G. W. *Nature* 1993, 364, 73.
- 4. Coval, S. J.; Conover, M. A.; Mierzwa, R.; King, A.; Puar, M. S.; Phife, D. W.; Pai, J.-K.; Burrier, R. E.; Ahn, H.-S.; Boykow, G. C.; Patel, M.; Pomponi, S. A. Bioorg, Med. Chem. Lett. 1995, 5, 605.
- Chackalamannil, S.; Xia, Y.; Wang, Y.; Tsai, H.; Czarniecki, M.; Wang, S.; Clemmons, A.; Ahn, H.-S.; Boykow, G. C. Bioorg. Med. Chem. Lett. 1995, 5, 2005.
- Kuo, M. S.; Zielinski, R. J.; Cialdella, J. I.; Marschke, C. K.; Dupuis, M. J.; Li, G. P.; Kloosterman, D. A.; Spilman, C. H.; Marshall, V. P. J. Am. Chem. Soc. 1995, 117, 10629; Kwon, B.-M.; Nam, J.-Y.; Lee, S.-H.; Jeong, T.-S.; Kim, S.-U.; Son, K.-H.; Kim, Y.-K.; Han, K.-H.; Kim, S.-K.; Bok, S.-H. Tetrahedron Lett. 1995, 36, 6487; Kim, H.-S.; Oh, S.-H.; Kim, D.-I.; Kim, I.-C.; Cho, K.-H.; Park, Y.-B. Bioorg, Med. Chem. 1995, 3, 367.
- Compounds 2a and 1a,b were prepared from cyanuric chloride by stepwise displacements with appropriate amines: Quirke, J. M. E. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Ed.; Pergamon: Oxford, 1984; Vol 3, pp 457-530. All the triazines mentioned in this paper are 1,3,5triazines.
- Modest, E. J. In Heterocyclic Compounds; Elderfield, R. C., Ed.; John Wiley & Sons: New York, 1961; Vol 7, p 671; Diels, O. Chem. Ber. 1899, 32, 691.
- For reviews on Pd-mediated cross coupling reactions with various organometallic reagents, see: Stille, J. K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508; Negishi, E.-I. Acc. Chem. Res. 1982, 15, 340; Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117; Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; Undheim, K.; Benneche, T. Acta Chem. Scand. 1993, 47, 102; Kalinin, V. N. Synthesis 1992, 413.
- 10. Procedure and analytical data for Pd-mediated coupling of tributylphenyltin to triazinyl chloride 1b: A mixture of 1b (258 mg, 0.522 mmol), tributylphenyltin (0.50 mL, 1.6 mmol), Pd(PPh₃)₄ (60 mg, 0.052 mmol), and PPh₃ (27 mg, 0.10 mmol) were heated in N-methylpyrrolidinone (4 mL) at 100 °C under N₂ for 28 h. The reaction solvent was distilled off and the residue was dissolved in CH₂Cl₂-MeOH (9-1), washed with saturated NaHCO₃ solution, dried (MgSO₄), and concentrated. Flash chromatography on a silica gel column with EtOAc-hexane (15-85) as eluent gave 204 mg (73%) product 3m as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 1.48 (s, 9 H), 3.16-3.24 (m, 4 H), 3.47-3.54 (m, 4 H), 3.78-4.08 (m, 4 H), 3.90-4.18 (m, 4 H), 6.87 (d, 2 H, J = 8.8 Hz), 7.22 (d, 2 H, J = 8.9 Hz), 7.40-7.51 (m, 3 H), 8.38 (d, 2 H, J = 7.9 Hz); FAB MS 536 (100%); Anal. (C₂₈H₂₄N₂O₂Cl) C, H, N.

Procedure and analytical data for Pd-mediated coupling of p-chlorobenzylzinc to triazinyl chloride 1b:¹² A solution of p-chlorobenzylzinc bromide in THF (1.7 mL, ca 3.0 mmol) was heated with a mixture of 1b (300 mg, 0.607 mmol), Pd(PPh₃)₄ (70 mg, 0.061 mmol), PPh₃ (32 mg, 0.12 mmol), and N-methylpyrrolidinone (4 mL) in a pressure tube at 100 °C under N₂ for 20 h. The mixture was concentrated and the residue was dissolved in CH₂Cl₂-MeOH (9-1), washed with saturated NaHCO₃ solution, dried (MgSO₄), and concentrated. Flash chromatography on a silica gel column with EtOAchexane (15–85) as eluent gave 319 mg (90%) product 3r as a solid. ¹H NMR (400 MHz, CDCl₃): δ 1.48 (s, 9 H), 3.11–3.19 (m, 4 H), 3.42–3.49 (m, 4 H), 3.74–3.81 (m, 4 H), 3.77 (s, 2 H), 3.89–3.98 (m, 4 H), 6.86 (d, 2 H, J = 9.0 Hz), 7.22 (d, 2 H, J = 8.9 Hz), 7.25 (d, 2 H, J = 9 Hz), 7.31 (d, 2 H, J = 9 Hz); FAB MS 584 (100%); Anal. (C_{29} H₃₅N₇O₂Cl₂) C, H, N.

- 11. There was a recent report of Pd-mediated coupling reactions of phenylboronic acid to 2-substituted 4,6-dichloro-1,3,5-triazines: Janietz, D.; Bauer, M. Synthesis 1993, 33.
- 12. The zinc reagent was prepared by Knochel's procedure: Berk, S. C.; Knochel, P.; Yeh, M. C. P. J. Org. Chem. 1988, 53, 5789.